Airborne Sunphotometry in Support of the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment, 2001 Jens Redemann¹, B. Schmid¹, J. M. Livingston², P. B. Russell³, J. E. Eilers³, P. V. Hobbs⁴, R. Kahn⁵, W. L. Smith Jr.⁶, B. Holben⁷, K. Rutledge⁸ ¹Bay Area Environmental Research Institute, CA ²SRI International, CA, ³NASA Ames Research Center, CA ⁴University of Washington, WA, ⁵Jet Propulsion Lab, CA ⁶NASA LaRC, VA, ⁷NASA GSFC, MD, ⁸AS&M, Inc./NASA LaRC, VA Chesapeake Lighthouse & Aircraft Measurements for Satellites (CLAMS) #### Contents - 1. Status of AATS-14 data - AATS-14 measurements aboard the UW CV-580 – comparability with other platforms and instruments - Comparisons of AATS-14 to AERONET Cimel sunphotometer at COVE: implications for satellite validation - 4. Spatial statistics of AOD off the US East Coast - 5. AATS full column data availability - 6. Summary #### AATS-14 aboard the UW CV-580 #### 1. Measures direct solar beam transmission @: 353.5 380.0 449.0 499.4 525.0 605.7 675.1 778.4 864.5 939.7 1019.1 1059.4 1241.3 1557.8 nm #### 2. Yields: aerosol optical depth + aerosol extinction when A/C flies profiles columnar water vapor (ozone) + water vapor (ozone) concentration when A/C flies profiles #### 3. Size: Telescope dome 8" OD (hemisphere) atop 5" H pedestal. (Total H: 9" above A/C skin), Inside A/C: 12" D x 18" H cylinder. #### 4. Weight: 131.6 lbs #### Status of AATS-14 data analysis/archiving | Date | UW
Flight | Flight
hours | Status / AATS-14 highlights | |---------|-------------------------|-----------------|--| | July 10 | 1870 | 4.92 | archivable Run at 100 ft (for AOD) from lighthouse out to east and return to lighthouse: AOD(499nm) ~ 0.24 Ascent to 12,000 ft over lighthouse | | July 12 | 1871 | 5.63 | archivable Vertical profile, with full chemistry, over lighthouse: AOD(499nm) ~ 0.08 Low pass over lighthouse at Terra overpass time (1154 UTC) | | July 14 | 1872 | 3.27 | - archivable - Underfly Terra at COVE lighthouse at 100 ft (Terra overpass at 1542 UTC): AOD(499nm) < 0.1 | | July 16 | 1873 | 3.28 | Closer look at cloud-screening required Some runs at 100 ft between lighthouse and buoy 44014 (in intermittent cirrus) BRDF in best cloud-free area available (still some cirrus), climbed to 10, 000 ft at this location for continous sunphotometer and in situ aerosol measurements. Continous sunphotometer and aerosol etc measurements in profile to 100 ft on return to Wallops. | | July 17 | 1874 AATS-14 CLAMS page | 5.80 | - archivable - Vertical spiral 2 nm NW of lighthouse (36 deg 57.3 min/75 deg 37.5 min): AOD(499nm) ~ 0.4 - Run at 100 ft through location given above at time of satellite overpass: AOD(499nm) gradient 0.38 -> 0.48 in 50n.miles | #### Status of AATS-14 data analysis/archiving | Date | UW Flight | Flight
hours | Status / AATS-14 highlights | |-------------|-----------|-----------------|---| | July 23 | 1875 | 2.92 | archivable Underfly Terra satellite overpass at 1535 UTC in cloud free or scattered cloud conditions at least 50 miles from shore> extremely low AOD's (<= 0.08) + nice H₂O profile | | July 25 | 1876 | cancelled | ER-2 cancel. | | July 26 | 1877 | cancelled | UW data system | | July 26 | 1878 | 3.68 | - archivable - Low-level run in cloudless conditions beneath Terra satellite overpass at 1607 UTC, with 100 ft run between COVE lighthouse and buoy 44014 from 1556-1612 UTC: AOD(499nm) ~ 0.23 - Slow climb to 10, 000 ft over buoy 44014 (36 deg 34.98 min/74 deg 50.16 min) - Fast descent to 100 ft over buoy | | July 30 | 1879 | 3.70 | More cloud screening required Underfly ER-2 off coast for sunphotometer and aerosol profiles in cloud-free holes | | July 31 | 1880 | 5.5 | - archivable - Low-level run in cloudless conditions at 1634 -1639 UTC | | August
2 | 1881 | 4.93 | - archivable - Low-level run beneath Terra satellite overpass at 1613 UTC at 100 ft - two spirale profiles | # Typical UW CV-580 flight track in CLAMS #### Typical AATS-14 measurement day #### AERONET vs. AATS-14 at COVE, July 17, 2001 #### Statistics of AERONET vs. AATS-14 at COVE, July 10 - Aug.2, 2001 ## CV-580/AATS-14 location, CLAMS July 17, 2001, 16:00 - 16:15 UTC #### AOD variability on July 17th, 2001 #### AATS-14 vs. AERONET: spatial and temporal variability #### Vertical aerosol structure, July 17, 2001 #### Vertical water vapor structure, July 17, 2001 ### Comparison between AATS-14, AERONET and MISR (unvalidated standard algorithm), CLAMS, July 17, 2001 #### Summary - 1. AATS-14 data from CLAMS will require about 15-20Mb of archive space. - 2. Available as of Feb. 23, 2002: Version 1.0 of all full-column measurements of AATS-14 in CLAMS in 11 ASCII data files (one per CV-580 flight). Call me for password info to geo.arc.nasa.gov/sgg/CLAMS/CLAMSdata/CLAMS_data_table.html - 3. In CLAMS, AATS-14 measured full column aerosol optical depth spectra and columnar water vapor at exact TERRA overpass time on at least 7 occasions. For five of these opportunities, AOD at 499nm was at or below 0.1. - 4. During TERRA overpass time on July 17, 2001, AATS-14 measured the highest AOD encountered during the entire experiment (~0.49 at 499nm), including a horizontal gradient in AOD of more than 0.1 over a horizontal distance of ~80 kilometers. - 5. Comparisons between airborne AATS-14 in the vicinity of and AERONET Cimel derived AOD's directly at the Chesapeake Lighthouse show good agreement (and strongest correlation coefficients at 380 and 500 nm). - 6. Ozone measurements at COVE?